La Escalerilla pluton, San Luis Argentina: The orogenic and post-orogenic magmatic evolution of the famatinian cycle at Sierras de San Luis

Augusto Francisco Morosinia,a,c,*, Ariel Emilio Ortiz Suárez a, Juan Enrique Otamendi b,c, Diego Sebastián Pagano a,c, Gabriel Alejandro Ramos a

Departamento de Geología, Universidad Nacional de San Luis, 5700, San Luis, Argentina
b Departamento de Geología, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Argentina
c Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

ABSTRACT

Field relationships, geochemical analysis and two new absolute ages (LA-MC-ICP-MS U/Pb-zircon) allow the division of the La Escalerilla pluton (previously considered to be a single granitic body) into two different plutons: a new La Escalerilla pluton (s.s.), dated at 476.7 ± 9.6 Ma, that represents the northern portion, and the El Volcán pluton, dated at 404.5 ± 8.5 Ma, located in the southern sector. The La Escalerilla pluton is composed of three facies: (1) biotite-bearing granodiorite, (2) porphyritic biotite-bearing granite, and (3) porphyritic two micas-bearing leucogranite, being the presence of late-magmatic dykes in these facies common. The El Volcán pluton is composed of two main facies: 1) porphyritic biotite-bearing granite, and 2) two micas-bearing leucogranite, but amphibole-bearing monzodioritic and tonalitic mega-enclaves are also common, as well as some dykes of amphibole and clino.pyroxene-bearing syenites. A peculiarity between the two plutons is that their most representative facies (porphyritic biotite-bearing granites) have, apart from different absolute ages, distinctive geochemical characteristics in their concentrations of trace elements; the La Escalerilla granite is comparatively poorer in Ba, Sr, Nb, La, Ce, P, and richer in Rb, Tb, Y, Tm and Yb. The El Volcán granite is notably enriched in Sr and depleted in Y, resulting in high Sr/Y ratios (12.67–39.08) compared to the La Escalerilla granite (1.11–2.41). These contrasts indicate that the separation from their sources occurred at different depths: below 25 km for the La Escalerilla, and above 30 km for the El Volcán. Moreover, the contrasts allow us to interpret a thin crust linked to an environment of pre-collisional subduction for the first case, and a thickened crust of post-collisional environment for the second, respectively.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The magmatic evolution of the southwestern sector of the Sierra de San Luis has been the focus of investigation for the last 15 years (e.g.: Ortiz Suárez et al., 1992; Sato et al., 1996, 2003a, 2003b; Sims et al., 1998; von Gosen, 1998; von Gosen et al., 2002; Llambías et al., 1998; González et al., 2002; Brogioni et al., 2005; López de Luchi et al., 2002, 2007; Steenken et al., 2006, 2008; Morosini et al., 2009; Morosini, 2011, and others).

One of the main and most representative examples of this magmatism is the La Escalerilla pluton (LEP). This plutonic body has opened a debate as to its temporary location, since it has been considered to be part of the pre-orogenic Ordovician plutonic age (Ortiz Suárez et al., 1992; Sato et al., 1996; Llambías et al., 1998; von Gosen et al., 2002; Brogioni et al., 2005), as well as part of the post-orogenic Devonian plutonic age (Sims et al., 1998; López de Luchi et al., 2002, 2007; Steenken et al., 2006, 2008). However, new questions have arisen since the work of von Gosen et al. (2002), who determined a new age of 507 ± 24 Ma for the north of the LEP, showing great difference from the age (403 ± 6 Ma) proposed by Sims et al. (1998) for the southern sector. Based on these ages von Gosen et al. (2002) proposed a Devonian pluton in the southern sector, which was called El Volcán, whose limit (inferred) with the

* Corresponding author. Departamento de Geología, Universidad Nacional de San Luis, 5700, San Luis, Argentina.
E-mail address: afmorosini@gmail.com (A.F. Morosini).
La Escalerilla pluton would be an intrusive contact (Fig. 2; von Gosen et al., 2002).

In this paper, through a series of detailed analyses of field relationships, the petrography of the plutons, whole-rock compositions, and data and two new U-Pb zircon ages, we demonstrate that: 1) LEP is a composite pluton, built by several intrusions of different magmas and 2) there are different ages between the central-north and the southern areas, which according to von Gosen et al. (2002) makes it possible to assign a new pluton in the southern sector, El Volcán pluton (EVP), with distinctive characteristics and a younger age. Finally, taking into account published and new data we contribute to the understanding of the geodynamic context where these specific plutons were generated and emplaced.

2. Methodology

This paper results from intense work of field based on the petrological and structural analysis. The cartography was done with ASTER images and a satellite image obtained with the Stitch Maps software from Google Earth. Thin sections were petrographically described and modal compositions were obtained with a manual point counter using 1000 points per thin section. The classification of the rocks was based on the IUGS diagram (Le Maitre, 2002), and abbreviations for names of rock-forming minerals proposed by Whitney and Evans (2010) were used. Whole-rock analyses were performed by Activation Laboratories at Ancaster, Ontario (Canada).

For 238U and 232Th, an ion-counting channel for 204Pb, and either measurements were made in static mode, using Faraday detectors. The errors in measurement of 206Pb/238U and 207Pb/235U age. The errors in determination of 206Pb/204Pb and 207Pb/204Pb resulted in uncertainties of 1.0 for 206Pb/204Pb and 0.3 for 207Pb/204Pb). Uncertainty results obtained by calibration correction are generally 1% (2σ) uncertainty in age, due to low intensity of the 208Pb signal. Furthermore, common Pb correction was accomplished using the measurement of 204Pb and assuming an initial Pb composition according to Stacey and Kramers (1975) (with uncertainty of 1.0 for 206Pb/204Pb and 0.3 for 207Pb/204Pb). Uncertainty results obtained by calibration correction are generally 1% (2σ) for both 206Pb/238U and 206Pb/207Pb ages. The uncertainties of the ages obtained for each sample are based on the scatter and precision of the whole set of 206Pb/238U and 206Pb/207Pb ages, weighted according to their measurement errors (shown at 1σ). The systematic error, which includes the standard calibration, standard calibration of age, and normal composition of Pb and U decay constants is generally 1–2% (2σ).

We prefer to use conventional concordia diagrams because between 206Pb/238U and 207Pb/235U apparent ages are the best concordances, and the 206Pb/207Pb ages have the greatest uncertainties. In addition, we report as the final crystallization age for each sample the mean of the 206Pb/238U apparent values with highest concordance. Moreover, overlapping of analysis was carried by means of Isoplot/Excel (Ludwig, 2003).

3. Geological setting

The Sierra de San Luis belongs to the austral sector of the geological province of Sierras Pampeanas Orientales (Camínos, 1979), with a general NE-SW trend, approximately 160 km long and 80 km wide. It is composed of metamorphic and igneous rocks that belong to a debated evolution of Proterozoic-Paleozoic age which records the events that occurred in the Pampean, Famatinian and Achallian orogenic cycles. The Pampean Orogeny (Acenolaza and Toselli, 1976; Dalla Salda, 1987; Rapela et al., 1992) has been interpreted by three hypotheses: (a) collision of an active seismic ridge against the Río de La Plata craton (Gromet and Simpson, 2000), (b) collision of a ridge against Kalahari craton and subsequent displacement by a transform fault to the Río de la Plata craton (Rapela et al., 2007), or (c) collision of an island arc with the Río de La Plata craton and subsequent Pampia terrain collision (Escayola et al., 2007; Ramos et al., 2014, and references therein). In either case, this orogeny develops from the Ediacaran to Stage 5 of the Cambrian, with a metamorphic climax at ~530 Ma. The Famatinian orogen is interpreted as a magmatic arc which was closed due to a collision caused by the interaction of an allochthonous terrane (Cuyania/Precordilleria) derived from Laurentia (Thomas and Astini, 1996) on the western edge of Gondwana (Acenolaza and Toselli, 1981; Rapela et al., 2001; Otamendi et al., 2009; Steenken et al., 2010), developed during Ordovician and Silurian periods. The Achallian orogeny corresponds to an intra-plate plutonic activity that occurred in the Devonian period (Sim et al., 1998; Stuart-Smith et al., 1999; López de Luchi et al., 2007).

The current north-south trending configuration of the Sierra de San Luis is the result of Andean tectonic compression processes (Jordan and Allmendinger, 1986; Ramos et al., 2002).

During the last three decades a large number of studies have focused on the structural evolution, metamorphism and magmatism of the basement in the Sierra de San Luis (Kilmurray and Dalla Salda, 1979; López de Luchi, 1987; Ortiz Suárez et al., 1992; Llambías et al., 1998; Sim et al., 1998; von Gosen and Prozzi, 1998; Delpino et al., 2001, 2007; González et al., 2002; Sato et al., 2003a, 2003b; López de Luchi et al., 2007; Steenken et al., 2006, 2008, 2010, 2011; Drobe et al., 2009; Morosini et al., 2009; Morosini and Ortiz Suárez, 2010, 2011).

The sierra is dominated by metamorphic rocks of different grades, of Precambrian-Early Paleozoic age, and intruded in the Paleozoic by different cycles of granitic plutonism (Cordillo and Lencinas, 1979; Ortiz Suárez et al., 1992; Llambías et al., 1998; Sato et al., 2003a; López de Luchi et al., 2007).

The metamorphic basement of the south of the Sierra de San Luis consists of three main NNE trending complexes (Fig. 1): Nogoli (NMC), Pringles (PMC), and Conlara (CMC) Metamorphic Complexes (Sim et al., 1998). These units are separated by two narrow low-grade belts of the San Luis Formation (SLF) which is described by Prozzi and Ramos (1988). Two names have been used to label different zones in the northern part of the Sierra de San Luis: Las
Fig. 1. (A) Map showing the location of the Sierra de San Luis with respect to the Pampean orogen, Famatinian magmatic arc, and Cuyania and/or Precordillera terrane. (B) Geological map of the Sierra de San Luis showing the distribution of metamorphic and plutonic units (modified from Sims et al., 1998; Ortiz Suárez, 1999; von Gosen et al., 2002; Sato et al., 2003a; Morosini, 2011; and others). The black box represents the location of the study area (Fig. 2).
Fig. 2. (A) Geological map of the studied intrusive units, with location of the analyzed samples. (B) Distribution and names of the plutons.
Aguadas Complex (LAC, Ortiz Suárez, 1988) and Las Higueras Metamorphites (LHM, Grosso Cepparo et al., 2007). The LAC would be a middle-grade metamorphic zone within the CMC, while the features of LHM appear to be linked to the PMC and SLF. Nonetheless, the position and nature of the boundaries between the southern and northern metamorphic units are still unresolved and are a matter of study.

All the metamorphic rocks show a sub-vertical penetrative striking NNE foliation, which is attributed to the compression of Famatinian orogeny (Ortiz Suárez et al., 1992). This deformation in the middle to high-grade rocks developed on remnants of previous metamorphic structures (Sato et al., 2003a), which were considered pre-Famatinian (von Gosen and Prozzi, 1998; González, 2003; Sato et al., 2003a) and attributed to the Pampean orogeny (Kilmurray and Dalla Salda, 1979; Criado Roque et al., 1981).

Contacts between the metamorphic complexes of the Sierra de San Luis have a tectonic component, due to the development of ductile shear zones parallel to sub-parallel to the main famatinian metamorphic surface (NNE), which have favored the superposition of high-grade metamorphic complexes over those of low-grade, resulting in a metamorphic inversion (Ortiz Suárez and Casquet, 2005; Morosini et al., 2014). The observation of some transitional passages between metamorphic units of middle and low-grade (von Gosen and Prozzi, 1998; Sato et al., 2003a) has been less common.

The magmatism of the Sierra de San Luis is characterized by the presence of mafic-ultramafic rocks and a large number of granitoids of intermediate to acidic compositions.

Four mafic-ultramafic rocks groups were recognized, and they are the following: (1) La Jovita — Las Aguilas (Kilmurray and Villar, 1981; Sato et al., 2003a; Cruciani et al., 2011, and references therein), (2) San Francisco — Villa de la Quebrada (Sato et al., 2003a, and references therein), (3) Las Cañas (Ortiz Suárez et al., 2012, and references therein) and (4) El Morro (Delakowitz et al., 1991).

Moreover, the bodies of granitoids rocks of the Sierra de San Luis have been classified as: (1) pre-kinematic, syn-kinematic and post-kinematic intrusives (Ortiz Suárez et al., 1992), with reference to the climax of the Famatinian orogeny which took place between 480 and 445 Ma, and based on the main geological features such as internal deformation, shaped bodies and rheological contrasts with the metamorphic host rocks; (2) Famatinian early pre-orogenic, Famatinian syn-orogenic, and Famatinian late to post-orogenic intrusives (Sato et al., 2003a). These authors distinguish within the pre-orogenic granitoids two groups, one of tonalite-granodiorite and one from granite-leucogranodiorites; and (3) two suites of Ordovician age and two suites of Devonian age (Lopez de Luchi et al., 2007), the first two named Ordovician tonalite suite (OTS) and Ordovician granodiorite-granite suite (OGGS), both considered to be part of the Famatinian orogenic cycle, and the other two named Devonian granite suite (DGS) and Devonian monzonite-granite suites (DMGS), considered to be part of the Achaean orogenic cycle proposed by Sims et al. (1998). All these suites are syn-kinematic and are distinguished based on their main geochemical characteristics.

In this paper we refer to the set of granitoids of Upper Cambrian-Ordovician age of the Sierra de San Luis as Famatinian “orogenic” granitoids (considering a syn-metamorphic magmatism), and we solely make one distinction to separate a group having intermediate compositions, represented mainly by metaluminous to slightly peraluminous tonalite (I-type), from another of acid composition, represented by peraluminous to peraluminous felsic granites and leucogranodiorites (S-type), whose characteristics are equivalent to those reported by other authors (Llambias et al., 1998; Brogioni et al., 2005; López de Luchi et al., 2007). Furthermore, we will continue referring to the Famatinian post-orogenic granitoids when we mention the Devonian plutons. In this sense we consider the Achaean cycle proposed by Sims et al. (1998) as an ascent and erosion stage, as well as part of the Famatinian orogenic collapse (Fig. 1).

3.1. Host rock geology of the studied plutons

The regional metamorphic rocks hosting the LEP correspond to Nogoli Metamorphic Complex, Pringles Metamorphic Complex and San Luis Formation, but this pluton also intrudes tonalitic rocks of Las Verbenas, El Salto, and Tinaja plutons (Morosini, 2011, Fig. 2). On the other hand, for the EVP it is only possible to recognize Pringles Metamorphic Complex as metamorphic host-rock toward east, due to the absence of basement toward the south and west of the pluton, because this is covered by Neogene sediments; whereas that northward the host rocks of the EVP correspond to the LEP (Fig. 2). A summary of the main petrological characteristics of metamorphic host rocks and the relationship with the studied plutons is provided in Table 1.

4. Results

4.1. Geology and petrology of the plutons

For a better understanding of the geology and petrography of the studied plutons, hereinafter we do not refer to the LEP (s.l.) in a general term, rather we refer to the LEP in a strict sense (s.s.) for those rocks cropping out in the central and northern areas, and the EVP when we refer to the plutonic rocks that were previously considered to be the southern portion of the LEP (s.l.) (Fig. 2).

4.1.1. La Escalerilla pluton (LEP)

The LEP is a zoned elongated intrusives of 45 km long, which extends along the central and astral portion of the Paleozoic crystalline basement of the Sierra de San Luis, from La Carolina, in the north, to Potrero de los Funes locality, in the south (Fig. 2). The granitic massif reaches up to 6 km in width in its southern sector, but gradually becomes thinner northward, and exhibits a clear inflexion zone (homoclinal) in its central area (Figs. 1 and 2). The LEP is composed of three facies: (1) biotite-bearing granodiorite facies (LE-gd), (2) porphyritic biotite-bearing granite facies (LE-g), and (3) porphyritic two micas-bearing leucogranite facies (LE-I) (Fig. 3). There is also a swarm of aplo-pegmatic granite dykes, cropping out both inside and outside the pluton (these are not described in the present paper).

4.1.1.1. Biotite-bearing granodiorite facies (LE-gd). The LE-gd facies is located in two sectors of the pluton, one with band-like form located in the western part of the inflexion zone (south of Bemberg Ranch), and another located further north. The contact between LE-gd and LE-g facies (as presented herein below) in the western part of the inflexion zone is transitional, due to a progressive increase in the size and concentration of K-feldspar phenocrysts. However, there are sites with inter-facies shear bands (~10 m).

The LE-gd facies exhibit high content of mafic microgranular enclaves (~5–80 cm) of dioritic and/or tonalitic composition, generally oriented following the internal magmatic fabric, and schlieren fabrics are common. Locally leucocromatic syn-magmatic dykes of different thickness were recognized (Fig. 4A). The LE-gd facies has leuco-mesocratic color index (Cl: 15–35) and shows equigranular medium-grained texture with a slightly foliated fabric. The rock consists of quartz, plagioclase (andesine: An43-50), K-feldspar (microcline), and biotite (anneite-phlogopite series), and as accessories zircon, sphene and allanite. Secondary minerals are represented by clinzoisite-epidote series and muscovite (Table 2). Quartz
Table 1
Main host rocks features; relationship between different host rocks and plutonic units in the study area.

<table>
<thead>
<tr>
<th>Lithologies</th>
<th>Metamorphism</th>
<th>Structures and fabric</th>
<th>Contact with La Escalerilla pluton</th>
<th>Contact with LE-gd facies</th>
<th>Contact with LE-g facies</th>
<th>Contact with LE-I facies</th>
<th>Contact with El Volcán pluton</th>
<th>Contact with EV-g facies</th>
<th>Contact with EV-I facies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nogolí Metamorphic Complex</td>
<td>Paragneiss, orthogneiss, metatexites, diatexites, amphibolites</td>
<td>High-grade (high-amphibolite facies, Barrovian-type)</td>
<td>Decoupled in the inflection zone and moderately coupled southwestward</td>
<td>No contact</td>
<td>No contact</td>
<td>No contact</td>
<td>No contact</td>
<td>No contact</td>
<td>No contact</td>
</tr>
<tr>
<td>Micaschist Group</td>
<td>Micaceous schists, quartz-feldspar schist, quartzites, calc-silicate, pegmatites</td>
<td>Medium-grade (from medium-greenschists to low-amphibolite facies, Barrovian-type)</td>
<td>No contact</td>
</tr>
<tr>
<td>San Luis Formation</td>
<td>Phyllites, meta-sandstones, meta-conglomerates, micaceous schists, quartzites, metavolcanites</td>
<td>Low-grade (from low- to medium-greenschists facies, Barrovian-type)</td>
<td>Partially decoupled; boundary ductilely deformed and host rock curved following the shape of convergent lobes, which are associated with the magma advancing front, but in the end, they cut it; a thermal aureole is generated</td>
<td>Partially decoupled</td>
<td>Partially decoupled</td>
<td>No contact</td>
<td>No contact</td>
<td>No contact</td>
<td>No contact</td>
</tr>
<tr>
<td>Tonalitic plutons previously intruded</td>
<td>leucotonalites, metatonalities, dioritic-gabbro enclaves, syn-magmatic leucocratic dykes</td>
<td>Partially obliterated magmatic fabric; microgranular enclaves (mingling with gabbro-dioritic cogenetic magmas); development of mylonites (S-C domains)</td>
<td>Partially decoupled magmatic contact; crushing of tonalite bodies by LE-gd facies in multi stage (deformed acid dyke injections); in some sides they are mixing</td>
<td>No contact</td>
<td>No contact</td>
<td>No contact</td>
<td>No contact</td>
<td>No contact</td>
<td>No contact</td>
</tr>
</tbody>
</table>

For more detailed petrographic descriptions of the different metamorphic complex and tonalitic plutons see (e.g.: Sato et al., 1996; Llambias et al., 1998; Sims et al., 1998; von Gosen and Prozzi, 1998; Sato et al., 2003a; Brogioni et al., 2005; Lopez de Luchi et al., 2007; Droбе et al., 2009; Steensken et al., 2010; Morosini, 2011).
Fig. 3. QAP modal classification diagrams for the studied granitoids. The tonalitic and gabbro-dioritic facies partly correspond to plutons that are host rocks of LEP.

Fig. 4. Photographs corresponding to the outcrop and thin sections of La Escalerilla pluton. (A) Biotite-bearing granodiorite facies (LE-gd) with a leucocratic syn-magmatic dike. (B) Photomicrography of LE-gd facies; notice that K-feldspar is not present as phenocrysts. (C) Texture of the porphyritic biotite-bearing granite facies (LE-g); in the center of the photograph a K-feldspar fenocristal partially reabsorbed by the matrix. (D) Photomicrography of LE-g facies; zircon crystal with a core and edge representing two different stages of growth (this is probably an inherited core). (E) Texture of the porphyritic two micas-bearing leucogranite facies (LE-l); the color index is lower than in the LE-g facies. (F) Photomicrography of LE-l facies; the abundance of muscovite and the development of myrmekites are common in this rock. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
occurs as crystal aggregates, up to 3 mm in size. The grains present deformation bands and subgrains. Plagioclase shows replacement of sericite and clinozoisite-epidote series minerals. K-feldspar is scarce (4–9%) and occurs as interstitial anhedral grains (Fig. 4B). Dark mica is present in limpid crystals with scarce zircon inclusions.

4.1.1.2. Porphyritic biotite-bearing granite facies (LE-g). The LE-g covers the largest area within LEP (approximately 70%), extending from the inflexion zone to the southern part of the Valle de Piedra hill, a short distance (~2 km) northward Potrero de Los Funes locality, in the contact with the EVP (Fig. 2). It is distinguished by the high dark mica content (10 ± 5.3%) and the presence of K-feldspar phenocrysts (Fig. 4C). According to the modal composition, monzo and syenogranites were identified (Fig. 3). They present porphyritic coarse-grained texture with internal magmatic fabric of NNE direction, outlined by the preferential orientation of the K-feldspar phenocrysts and mica crystals. This orientation is accentuated near the eastern contact, where the fabric is strongly associated with a mylonitic shear zone. Locally ellipsoidal microgranular monzodiorite and tonalitic enclaves (up to 1 m in diameter) are present in this facies. Sporadically, it is also possible to observe xenoliths of metamorphic host-rocks, predominantly tonalite (Fig. 3). They present porphyritic coarse-grained texture with internal magmatic fabric of NNE direction, outlined by the preferential orientation of the K-feldspar phenocrysts and mica crystals. This orientation is accentuated near the eastern contact, where the fabric is strongly associated with a mylonitic shear zone. Locally ellipsoidal microgranular monzodiorite and tonalitic enclaves (up to 1 m in diameter) are present in this facies. Sporadically, it is also possible to observe xenoliths of metamorphic host-rocks, predominantly tonalite (Fig. 3). They present porphyritic coarse-grained texture with internal magmatic fabric of NNE direction, outlined by the preferential orientation of the K-feldspar phenocrysts and mica crystals. This orientation is accentuated near the eastern contact, where the fabric is strongly associated with a mylonitic shear zone. Locally ellipsoidal microgranular monzodiorite and tonalitic enclaves (up to 1 m in diameter) are present in this facies. Sporadically, it is also possible to observe xenoliths of metamorphic host-rocks, predominantly tonalite (Fig. 3). They present porphyritic coarse-grained texture with internal magmatic fabric of NNE direction, outlined by the preferential orientation of the K-feldspar phenocrysts and mica crystals. This orientation is accentuated near the eastern contact, where the fabric is strongly associated with a mylonitic shear zone. Locally ellipsoidal microgranular monzodiorite and tonalitic enclaves (up to 1 m in diameter) are present in this facies. Sporadically, it is also possible to observe xenoliths of metamorphic host-rocks, predominantly tonalite (Fig. 3). They present porphyritic coarse-grained texture with internal magmatic fabric of NNE direction, outlined by the preferential orientation of the K-feldspar phenocrysts and mica crystals. This orientation is accentuated near the eastern contact, where the fabric is strongly associated with a mylonitic shear zone. Locally ellipsoidal microgranular monzodiorite and tonalitic enclaves (up to 1 m in diameter) are present in this facies. Sporadically, it is also possible to observe xenoliths of metamorphic host-rocks, predominantly tonalite (Fig. 3). They present porphyritic coarse-grained texture with internal magmatic fabric of NNE direction, outlined by the preferential orientation of the K-feldspar phenocrysts and mica crystals. This orientation is accentuated near the eastern contact, where the fabric is strongly associated with a mylonitic shear zone. Locally ellipsoidal microgranular monzodiorite and tonalitic enclaves (up to 1 m in diameter) are present in this facies. Sporadically, it is also possible to observe xenoliths of metamorphic host-rocks, predominantly tonalite (Fig. 3). They present porphyritic coarse-grained texture with internal magmatic fabric of NNE direction, outlined by the preferential orientation of the K-feldspar phenocrysts and mica crystals. This orientation is accentuated near the eastern contact, where the fabric is strongly associated with a mylonitic shear zone. Locally ellipsoidal microgranular monzodiorite and tonalitic enclaves (up to 1 m in diameter) are present in this facies. Sporadically, it is also possible to observe xenoliths of metamorphic host-rocks, predominantly tonalite (Fig. 3). They present porphyritic coarse-grained texture with internal magmatic fabric of NNE direction, outlined by the preferential orientation of the K-feldspar phenocrysts and mica crystals. This orientation is accentuated near the eastern contact, where the fabric is strongly associated with a mylonitic shear zone. Locally ellipsoidal microgranular monzodiorite and tonalitic enclaves (up to 1 m in diameter) are present in this facies. Sporadically, it is also possible to observe xenoliths of metamorphic host-rocks, predominantly tonalite (Fig. 3). They present porphyritic coarse-grained texture with internal magmatic fabric of NNE direction, outlined by the preferential orientation of the K-feldspar phenocrysts and mica crystals. This orientation is accentuated near the eastern contact, where the fabric is strongly associated with a mylonitic shear zone. Locally ellipsoidal microgranular monzodiorite and tonalitic enclaves (up to 1 m in diameter) are present in this facies. Sporadically, it is also possible to observe xenoliths of metamorphic host-rocks, predominantly tonalite (Fig. 3). They present porphyritic coarse-grained texture with internal magmatic fabric of NNE direction, outlined by the preferential orientation of the K-feldspar phenocrysts and mica crystals. This orientation is accentuated near the eastern contact, where the fabric is strongly associated with a mylonitic shear zone. Locally ellipsoidal microgranular monzodiorite and tonalitic enclaves (up to 1 m in diameter) are present in this facies. Sporadically, it is also possible to observe xenoliths of metamorphic host-rocks, predominantly tonalite (Fig. 3). They present porphyritic coarse-grained texture with internal magmatic fabric of NNE direction, outlined by the preferential orientation of the K-feldspar phenocrysts and mica crystals. This orientation is accentuated near the eastern contact, where the fabric is strongly associated with a mylonitic shear zone. Locally ellipsoidal microgranular monzodiorite and tonalitic enclaves (up to 1 m in diameter) are present in this facies. Sporadically, it is also possible to observe xenoliths of metamorphic host-rocks, predominantly associated with the Micaschists Group (PMC) or San Luis Formation. This facies is composed of quartz, plagioclase (oligoclase-anorthoclase: An21-34), biotite (with annite as the dominant component) and muscovite (phengite, primary magmatic); with garnet (spessartite32, grossular16, pyrope2), apatite-group minerals, zircon and sphene as accessory phases. Secondary minerals such as muscovite, albite and epidote-group minerals locally replace the primary phases (Table 2).
and dykes of intermediate and mafic compositions. These can be grouped into: 1) a larger body of porphyritic biotite-bearing granite facies (EV-g); 2) dykes and small isolated bodies of a two micas-bearing leucogranite facies (EV-l), 3) mega enclaves of amphibole-bearing monzodioritic and amphibole-bearing tonalitic compositions, and 4) scarce isolated dykes of amphibole and clinopyroxene-bearing syenite (Figs. 2 and 3).

4.1.2.1. Porphyritic biotite-bearing granite facies (EV-g). The EV-g facies covers the largest area of the EVP (Fig. 2). It shows petrographic differences related to LE-g facies (Ordovician) from LEP, which are summarized in: 1) a matrix with a finer texture and lesser sub-solid deformation, 2) higher dark mica content in the matrix, and 3) phenocrysts of K-feldspar more scattered inside the facies (without forming crystal mushes).

The EV-g facies lacks a strong post-magmatic deformation. However, locally sub-solid deformation can be recognized both in the margins and in internal sectors along discrete ductile shears. The EV-g facies and metamorphic host rocks are intruded by swarms of dykes and small bodies assigned to the EV-l facies interpreted as late-magmatic pulses.

In the EV-g facies, the mafic microgranular enclaves of quartz-dioritic composition, up to 50 cm, and locally isolated bodies of sienitic, monzodioritic and tonalitic composition are common (Fig. 2). The EV-g facies consists of rocks with porphyritic texture, made up of K-feldspar phenocrysts in a fine-to-medium grained groundmass. This facies is mainly composed of K-feldspar (microcline), quartz, plagioclase (oligoclasa-andesina: An26-44), biotite (annite-phlogopite series) and muscovite (phengite) in order of abundance. Zircon, epidote-group minerals, apatite and titanite were recognized as accessory minerals. The secondary phases are represented by muscovite and epidote-group minerals. The K-feldspar crystals are up to 8 cm long, locally showing rapakivi texture. In internal ductile shear zones, K-feldspar, biotite and muscovite grains are oriented causing an imperfect foliation. Quartz grains exhibit undulose extinction, deformation lamellae, subgrains, and polygonization tendency. Plagioclase crystals are strongly altered and replaced by muscovite and clinzoisite-epidote series minerals, sporadically showing curved twins and intracrystalline microfractures. Biotite is present as subhedral

![Fig. 5. Photographs corresponding to the outcrop and thin sections of the El Volcán pluton. (A) Texture of the porphyritic biotite-bearing granite facies (EV-g); equidimensional K-feldspar phenocrysts arranged randomly (without deformation). (B) Magmatic contact between equigranular two micas-bearing leucogranite facies (EV-l) and EV-g facies. Some K-feldspar crystals across the contact between both facies are located suggesting that the offset occurred by melt-assisted grain boundary sliding and stopped before final crystallization. (C) Rapakivi feldspar in EV-g facies. (D) Microscopic texture of EV-g facies; myrmekites between K-feldspar and plagioclase crystals are present. (E) Stoping of a small pulse of the EV-l facies in Micaschist Group (east of the El Volcán pluton). Syn-plutonic dykes took advantage of the existing metamorphic foliation planes when magma exerted pressure on the host rock. (F) Photomicrography of EV-l facies; the abundance of muscovite and garnet is common in this rock.](image-url)
Table 3
LA-MC-ICP-MS U/Pb-zircon data for LE-g facies (sample O22) and EV-g facies (sample AA13).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Spot Concentration</th>
<th>U (ppm)</th>
<th>Th (ppm)</th>
<th>Th/U</th>
<th>206Pb*/204Pb</th>
<th>207Pb*/204Pb</th>
<th>208Pb*/204Pb</th>
<th>206Pb*/238U</th>
<th>207Pb*/235U</th>
<th>206Pb*/238U</th>
<th>Error correction</th>
<th>206Pb*/238U</th>
<th>207Pb*/235U</th>
<th>206Pb*/207Pb</th>
<th>Error correction</th>
<th>206Pb*/238U</th>
<th>207Pb*/235U</th>
<th>206Pb*/207Pb</th>
<th>Best Age (Ma)</th>
<th>± (Ma)</th>
<th>Conc. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O22-12</td>
<td>1072.6 591.9 0.55 207.97 15.19 21.03 0.56 21.61 0.06 4.95 0.23 398.81 19.14 464.11 80.66 801.64 445.18 398.81 876.10 515.8 0.59 364.19 15.82 23.51 0.62 23.84 0.07 3.98 0.17 441.99 16.99 489.02 92.78 715.87 505.78 441.99 16.99 90.4</td>
<td></td>
</tr>
<tr>
<td>O22-13</td>
<td>647.29 568.5 0.88 471.25 16.19 15.13 0.61 15.41 0.07 2.93 0.19 444.68 12.60 482.37 59.24 665.70 325.70 444.68 12.60 92.2</td>
<td></td>
</tr>
<tr>
<td>O22-14</td>
<td>471.31 411.5 0.99 1411.0 17.06 4.12 0.65 5.16 0.08 3.11 0.60 496.24 14.88 506.46 20.59 552.89 18.97 496.24 14.88 98.4</td>
<td></td>
</tr>
<tr>
<td>O22-1</td>
<td>757.28 438.4 0.58 647.38 16.70 9.79 0.64 10.12 0.08 2.54 0.25 481.51 11.79 502.60 40.13 599.74 212.49 481.51 11.79 95.8</td>
<td></td>
</tr>
<tr>
<td>O22-10</td>
<td>668.95 628.1 0.94 789.13 17.16 4.66 0.61 6.54 0.08 4.59 0.70 468.60 20.72 480.83 25.05 539.56 102.04 468.60 20.72 97.5</td>
<td></td>
</tr>
<tr>
<td>O22-11</td>
<td>923.71 820.8 0.89 245.57 15.81 3.14 0.65 3.90 0.07 2.32 0.59 461.81 15.66 470.16 30.16 521.35 78.21 461.81 15.66 91.1</td>
<td></td>
</tr>
<tr>
<td>O22-2</td>
<td>377.87 680.8 0.88 1298.5 17.06 4.12 0.65 5.16 0.08 3.11 0.60 496.24 14.88 506.46 20.59 552.89 18.97 496.24 14.88 98.4</td>
<td></td>
</tr>
<tr>
<td>O22-3</td>
<td>457.93 155.4 0.34 1158.8 16.75 9.49 0.49 11.25 0.11 2.17 0.19 465.42 9.75 504.22 44.74 684.38 236.32 465.42 9.75 92.3</td>
<td></td>
</tr>
<tr>
<td>O22-9</td>
<td>932.02 1259.1 0.35 192.65 14.95 5.62 0.70 7.27 0.08 4.61 0.63 472.38 20.98 539.53 30.44 834.44 117.29 472.38 20.98 87.6</td>
<td></td>
</tr>
<tr>
<td>O22-6</td>
<td>454.22 315.7 0.69 14108 16.97 2.77 0.12 4.04 0.09 2.95 0.73 545.62 15.43 549.28 17.15 564.48 60.24 545.62 15.43 99.3</td>
<td></td>
</tr>
<tr>
<td>O22-10</td>
<td>539.28 364.6 0.71 4417 17.40 2.71 0.12 3.78 0.09 2.64 0.70 557.41 14.08 548.00 16.03 593.09 59.70 557.41 14.08 101.7</td>
<td></td>
</tr>
<tr>
<td>AA13-6</td>
<td>625 794.8 1.27 480 16.25 19.8 0.48 20.0 0.056 3.0 0.15 356.2 10.3 399.2 66.0 657.0 427.5 356.2 10.3 89.2</td>
<td></td>
</tr>
<tr>
<td>AA13-7</td>
<td>714 1032.8 1.45 487 17.24 10.4 0.46 11.1 0.058 3.9 0.35 367.4 13.8 390.5 36.1 529.5 229.5 367.4 13.8 94.1</td>
<td></td>
</tr>
<tr>
<td>AA13-9</td>
<td>676 407.3 0.60 1353 17.68 3.0 0.45 4.5 0.059 3.3 0.74 372.2 12.0 386.7 30.44 473.6 66.2 372.2 12.0 96.3</td>
<td></td>
</tr>
<tr>
<td>AA13-12</td>
<td>450 823 0.18 2783 17.88 2.8 0.54 6.7 0.065 6.1 0.91 408.4 24.3 414.5 22.9 448.6 61.2 408.4 24.3 95.8</td>
<td></td>
</tr>
<tr>
<td>AA13-13</td>
<td>447 1145 0.26 756 17.07 7.0 0.514 9.7 0.063 6.7 0.69 398.5 25.8 421.8 33.5 551.0 153.8 398.5 25.8 94.5</td>
<td></td>
</tr>
<tr>
<td>AA13-14</td>
<td>438 712.8 1.63 3448 17.60 4.5 0.500 5.3 0.063 2.8 0.53 390.7 10.9 411.8 17.9 484.0 98.7 390.7 10.9 96.9</td>
<td></td>
</tr>
<tr>
<td>AA13-5</td>
<td>512 437.6 0.85 3733 15.62 3.5 0.565 13.6 0.064 1.9 0.14 400.6 7.2 455.2 50.0 741.4 286.7 400.6 7.2 88.0</td>
<td></td>
</tr>
</tbody>
</table>
grains including pristine crystals of zircon (up to 0.03 cm) and titanite.

4.1.2.2. Two micas-bearing leucogranite facies (EV-I). The EV-I facies is widely distributed in the eastern sector of EVP (Fig. 2). It occurs mostly as dykes and small bodies (Fig. 5E) surrounded into the plutonic EV-g facies and into the metamorphic host rocks, representing the final magmatic differentiates of EVP. The dykes present variable thicknesses ranging from 10 cm to several meters. Within

Fig. 6. Ages of zircons in sample O22 belonging to the LE-g facies (La Escalerilla pluton). (A) Backscattered electron image of the analyzed zircons, generated ablation pits during the analysis are observed. (B) Conventional concordia diagram. Errors are shown as ellipses at the 2σ level. Three groups of ellipses are shown, the major one corresponding to Ordovician crystallization (solid-line yellow ellipses), with a concordia age calculated for this group, another group belongs to ages from an inherited core (dashed-line green ellipses), and one representing discordant ages for Pb loss (transparent dotted-line ellipses) that have not been weighted when the final age was determined. (C) Final Age, calculated by averaging the 206Pb/238U apparent ages with highest concordance. The results were plotted with Isoplot/Excel (Ludwig, 2003). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Ages of zircons in the sample AA13 belonging to the EV-g facies (El Volcán/C19 pluton). (A) Backscattered electron image of the analyzed zircons. (B) Conventional concordia diagram. Errors are shown as ellipses at the 2σ level. Two groups of ellipses are shown, the major one corresponding to Devonian crystallization (pink ellipses of solid line) with a concordia age calculated for this group, another group representing discordant ages for Pb loss (dotted line ellipses) that have not been weighted when the final age was determined. (C) Final Age, calculated by averaging the 206Pb/238U apparent ages with the highest concordance. The results were plotted with Isoplot/Excel (Ludwig, 2003). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
the EVP they have directions of WNW-ESE to NW-SE with dips predominantly toward NE. In the metamorphic rocks, dykes are emplaced with preferential N-S strikes, following the foliation of the host-rock, although in some sectors they are locally cut across transversely to the foliation. They have flow fabric given by the accumulation of minerals (Bt, Ms and Grt) in parallel bands (Fig. 5B). EV-I facies can be classified as leuco-monzonites (Fig. 3) with color index <10. This is a heterogeneous rock, normally of medium-grained texture, but locally varying from pegmatitic in the core to aplitic in the borders of the dykes. The rocks with pegmatitic texture are better exposed in the shear zone along the contact between EVP and the Micaschist Group (Fig. 2) where they are strongly milonitized.

The EV-I facies (dykes and major bodies) is primarily composed of quartz, plagioclase (oligoclase: An15-18), muscovite (phengite), biotite (amphibole-phlogopite series) and K-feldspar (microcline), and, as accessories, tourmaline (schorl), garnet-group minerals, apatite-group minerals and zircon (Table 2 and Fig. 5F). Quartz occurs as polycrystalline xenomorphic aggregates, from 1 mm in aplites to 3 mm average in zones with coarser texture. K-feldspar is present in anhedral crystals and xenomorphic polycrystalline aggregates. Plagioclase is somewhat larger than other minerals and is mostly altered to sericite. Muscovite forms subhedral grains from 0.2 to 3 mm and biotite is scarce and appears as subhedral individuals, normally with zircon inclusions. Tourmaline was not detected in thin sections, but was recognized in outcrops.

4.2. Zircon U-Pb dating of the studied plutons

Data of isotopic ratios and the estimation of apparent isotopic ages for studied granites of La Escalerilla and El Volcán plutons, respectively, are presented in Table 3.

The analyzed zircon crystals of LE-g facies (sample O22) are generally euheral to subhedral (magmatic), their size ranging from 120 to 250 μm in length, showing a typical internal zoning, and some crystals exhibit cores with discordant contours with respect to the zoning of crystal magmatic growth, indicating that these are inherited cores (Fig. 6A). But it is important to point out that the carrier rock of these zircons presents subsolidus deformation, which is the reason why we believe that some analyses of zircons show significant loss of Pb, and these analyses have not been subjected to the calculation of crystallization final age.

The final age of crystallization determined for the LE-g facies in the inflexion zone (sample O22) is typically Famatinian: 476.7 ± 9.6 Ma, being the concordia age of 477.5 ± 12 Ma (95% confidence) using a group of eight best concordance data between 206Pb/238U ages for studied granites of La Escalerilla and El Volcán plutons, respectively, are presented in Table 3.

The analyzed zircon crystals of EV-g facies (sample O22) are generally euheral to subhedral (magmatic), their size ranging from 120 to 250 μm in length, showing a typical internal zoning, and some crystals exhibit cores with discordant contours with respect to the zoning of crystal magmatic growth, indicating that these are inherited cores (Fig. 6A). But it is important to point out that the carrier rock of these zircons presents subsolidus deformation, which is the reason why we believe that some analyses of zircons show significant loss of Pb, and these analyses have not been subjected to the calculation of crystallization final age.

The final age of crystallization determined for the LE-g facies in the inflexion zone (sample O22) is typically Famatinian: 476.7 ± 9.6 Ma, being the concordia age of 477.5 ± 12 Ma (95% confidence) using a group of eight best concordance data between 206Pb/238U and 207Pb/235U apparent ages. Ages of 557.4 ± 14 Ma and 545.6 ± 15.4 Ma correspond to an inherited zircon core, the latter being the age that best fits the concordia (Fig. 6B–C).

Furthermore, in the EV-g facies (sample AA13 of El Volcán pluton), magmatic zircons yield a final age of 404.5 ± 8.5 Ma, with a concordia age of 405.2 ± 6.5 Ma (95% confidence) using the best seven concordance data-point (Fig. 7). The zircons of this granite are pristine and do not present inherited cores (although the data from statistical analyses do not allow us to confirm this assertion). However, in some analyses low Pb values are observed, presumably because this granite also has a degree of sub-solid deformation.

The results of the samples analyzed have a high degree of reliability, with a value of MSWD = 1.02 for sample O22 from the inflexion zone of the La Escalerilla pluton and a moderate probability of 0.41%. In turn, a value of MSWD = 0.22 for sample AA13 from the El Volcán pluton represents a much lower scatter of the used data points than expected by analytical errors, with a very good probability value of 0.97%.

4.3. Whole rock geochemistry of the dated granites

The major and trace element compositions of selected samples of the granitic facies from LEP and EVP are quoted in Table 4. The rocks have similar concentrations of major elements but different REE and trace element contents (Table 4 and Figs. 8 and 9). They are slightly to moderately peraluminous, although one sample (316)
Fig. 8. Major elements diagrams. (A) Villaseca et al. (1998); both granites are from lowly peraluminous (l-P) to moderately peraluminous (m-P), but one sample is metaluminous near the m-P limit. (B) Irvine and Baragar (1971); the granites are located very close to each other within the AFM diagram, both are part of the calc-alkaline series, and moderately evolved.

Fig. 9. Harker diagrams. Similar concentrations of major elements with respect to differentiation grade are observed, except Na$_2$O, P$_2$O$_5$ and Al$_2$O$_3$, which are slightly higher for the EV-g facies. The K$_2$O vs SiO$_2$ diagram shows the proposed fields by Peccerillo and Taylor (1976).
plot in the metaluminous field near the m-P limit (Fig. 8A). In the AFM diagram (Irvine and Baragar, 1971) they plot in a restricted field within the calc-alkaline series (Fig. 8B). The LEP and EVP are high-K to shoshonitic granites with normal and very similar trends (except to Na$_2$O, Al$_2$O$_3$ and P$_2$O$_5$), as is indicated by the Harker variation diagrams (Fig. 9).

The trace elements pattern normalized to chondrite values shows a general LILE enrichment and HFSE depletion. The spider diagram (Fig. 10A) shows that the granitic facies of the EVP, in relation to those of the LEP are comparatively richer in Ba, Sr, Nb, La,
Fig. 11. Map of ages determined in this work and by other authors in the study area. Ordovician ages of magmatic crystallization linked to main Famatinian regional metamorphism (M2) are showed, as well as Devonian ages associated with cooling of shear zones (M3) which resulted in the exhumation of Nogolí and Pringles Complexes during the collisional stage in Silurian period.
Ce, P, and poorer in Rb, Tb, Y, Tm and Yb. The EVP rocks are notably enriched in Sr and depleted in Y, resulting in high Sr/Y ratios (12.67–39.08) compared to LEP (1.11–2.41) (Table 4).

Chondrite-normalized REE values show that both granites are significantly enriched in LREE and depleted in HREE. However, two different pattern designs are apparent from Fig. 10B. The LEP granitic rocks have La/YbN with a range of 6.3–18.1, and negative Eu anomalies (Eu/Eu* = 0.33 to 0.48); while the EVP granitic facies show higher La/YbN ratios (9.0–37.6) and insignificant negative Eu anomalies (Eu/Eu* = 0.8).

5. Discussion and interpretation

5.1. Geochronology significance

The LEP (s.l.) has been previously considered to be only one granitic body of the pre-deformational Famatinian orogeny (Ortiz Suárez et al., 1992; Sato et al., 1996; Llambias et al., 1998; von Gosen et al., 2002; Brogioni et al., 2005), as well as of the Achaillian orogeny (Sims et al., 1998; López de Luchi et al., 2002; 2007; Steenken et al., 2006, 2008), based on field relationships and isotopic ages, respectively. However, von Gosen et al. (2002) determined an age of 507 ± 24 Ma (conventional U/Pb-zircon) for the northern portion of the body, and proposed a Devonian pluton in the southern sector, according to the age obtained by Sims et al. (1998), and which the authors called El Volcán.

Based on new U-Pb ages, whole rock chemical data and detailed field relationships, we support the existence of the EVP. The U-Pb ages (403 ± 6 Ma, SHRIMP U/Pb-zircon) obtained by Sims et al. (1998) in the southern sector of the La Escalerilla pluton (s.l.) correlated well with the age of 404.5 ± 8.5 Ma (LA-MC-ICP-MS U/Pb-zircon) obtained in this work from granitic rocks in the same area.

The new age of 476.7 ± 9.6 Ma (LA-MC-ICP-MS U/Pb-zircon) obtained in this work from granitic rocks cropping out in the infection zone (La Escalerilla homoclinal) restricts the possibility for considering that all rocks that compose the La Escalerilla pluton (s.l.) correspond to a Devonian age, as proposed by Sims et al. (1998), Stuart-Smith et al. (1999), Steenken et al. (2006) and López de Luchi et al., 2007. Taking into account published and new data, the LEP (s.l.) should be divided into two plutons, LEP (s.s.) in the north, and EVP in the south.

Furthermore, the crystallization age obtained in this work for the LE-g facies (infection zone) is very similar to the Ordovician ages obtained by other authors in the tonalitic and granitic bodies present in the near environment (Sims et al., 1998; von Gosen et al., 2002; Sato et al., 2003b, 2004; Steenken et al., 2006), which are summarized in Table 5 and Fig. 11. Therefore, the early synkinematic Ordovician age of LEP would be confirmed with respect to the main phase of the Famatinian orogeny, which is assumed to be within an interval of ~478 to ~450 Ma (Sato et al., 2003a). It should be pointed out that the age of 507 ± 24 Ma (conventional U/Pb-zircon) determined by von Gosen et al. (2002) in the northern sector of La Escalerilla pluton (LE-l facies) does not match the scheme proposed in the present study. We consider that this age is not consistent with the field relationships, because the LE-l facies is more differentiated and, consequently, more recent than the LE-g facies, here dated at 477 ± 10 Ma. Moreover, the intrusive contact (with stoping) that presents the LE-l facies over the Las Verbenas tonalitic body (Sato and Llambias, 1994; Morosini, 2011), whose age was calculated at 478 ± 4 Ma (SHRIMP U/Pb-zircon, Steenken et al., 2006), restricts the age of LE-l facies.

In general terms, the existing absolute ages show a marked contemporaneity between the LEP and the tonalitic plutons, and for

Fig. 12. Scheme of evolution for the Famatinian magmatism of the Sierra de San Luis considering the most reliable ages (SHRIMP and LA-MC-ICP-MS U/Pb-zircon or U/Pb-monazite). The average ages and the range of uncertainty calculated for each group (main metamorphism, orogenic and post-orogenic magmatism) are shown. (1) Sims et al. (1998); (2) Steenken et al. (2006); (3) Steenken et al. (2005); (4) This work; (5) Sato et al. (2003a); (6) Casquet et al. (2014); (7) Sims et al. (1997); (8) Stuart-Smith et al. (1999); (9) Siegesmund et al. (2004); (10) Whitmeyer and Simpson (2004); (11) Carugno Durán and Ortiz Suárez (2012).
that reason, we decided to group all the Ordovician plutons of the area investigated in the so-called “Valle de Pancanta Plutonic Complex” (VPPC) (Fig. 2).

Contemporaneity between I- and S-type granitoids in only one tectonic environment of Ordovician age was recognized by Sato et al. (2003a), Brogioni et al. (2005) and López de Luchi et al. (2007) in the Sierra de San Luis, and by Pankhurst et al. (2000) and others in several localities of the Famatian belt, during a time period which spans from 499 to 468 Ma.

The ages presented in Table 5 and Fig. 11 show that there is an overlap between the orogenic magmatism (Ordovician) and metamorphism linked to Famatian climax (M2), as well as between Devonian plutonic intrusions and latest stages of the metamorphic episode M3, indicating the orogenic collapse. In addition, a strong body of evidence of contemporaneity between metamorphism and basic, intermediate and acid magmatism for the Famatian orogeny is reflected in the absolute ages of greater confidence (SHRIMP and LA-ICP-MS U/Pb-zircon or U/Pb-monazite methods) determined by different researchers in the Sierra de San Luis (Fig. 12).

5.2. Geochemical significance

Chondrite-normalized REE patterns of the LE-g facies display a gull-wing shape (Fig. 10B), indicating, together with low Sr/Y values, that plagioclase was a stable phase that fractionated Sr and Eu²⁺ at source. In contrast, the high degree of LREE fractionation with respect to HREE, the absence of Eu anomaly and the high Sr/Y values suggest that magmatic differentiation for EV-g facies occurs outside the stability field of plagioclase and within that of amphibole ± garnet, because Y strongly partitioned into both amphibole and garnet during partial melting or magmatic fractionation processes (Chiaradia, 2015). These assumptions about the geochemical results show that the studied granites have different origins. Sr/Y is a common qualitative indicator of the average crustal pressure, or depth, at which magmatic differentiation occurred (Paterson and Ducea, 2015). A larger Sr/Y ratio signifies a greater pressure or depth (Chapman et al., 2015). Low Sr/Y values (<10), for magmas with concentrations less than 3 wt% MgO, are statistically more common of arcs <20 km thick, while the magmatic differentiation occurs in the stability field of plagioclase, the main host of Sr in magmatic rocks especially during early differentiation processes. In contrast, high Sr/Y values (15–35), for magmas with concentrations less than 3 wt% MgO, are statistically common of arcs >30 km thick, where magmatic differentiation occurs outside the stability field of plagioclase and within that of amphibole ± garnet (Chiaradia, 2015).

Therefore, we can infer that the LE-g facies (Sr/Y = 1.11 to 2.41) would have separated from its source at depths no greater than 25 km (<0.7 GPa), because plagioclase starts to be very unstable from those depths onwards (e.g. Patino Douce and Beard, 1995). In contrast, the EV-g facies (Sr/Y = 12.67 and 39.08) would have been separated from its source at depths greater than 30 km (>0.8 GPa), in the amphibole ± garnet stability field.

These interpretations allow to deduce there was a thin crust at the time that the LE-g facies (La Escalerilla pluton) was fractioned from its source, indicating that melting took place in a stage of pre-collisional arc of subduction, probably linked to a back-arc sub-environment (Brogioni, 1994; Larrovere et al., 2011). On the contrary, previous interpretations suggest there was a thick crust at the time melting occurred which gave origin to the EV-g facies (El Volcán pluton), and this is consistent with the ages obtained that indicate an emplacement after a tectonic exhumation with cortical thickening due the collision stage. In this regard, there is a great similarity between the concentrations of major and trace elements in the EV-g facies (El Volcán pluton) with respect to other post-orogenic plutons of the Sierra de San Luis, such as Renca, La Totora, El Hornito and Las Chacras-Potrerillos, according with López de Luchi et al. (2007). These authors believe that all Devonian granitoids are defined by a melting trend between 0.7 and 1.0 GPa and that the lamprophyres associated with this magmatism indicate low-grade of melting of metasomatized lithospheric mantle, this signal of mantle in the El Volcán pluton would be represented by amphibole-bearing monzodioritic mega-enclaves and dykes of amphibole and clinopyroxene-bearing syenites.

6. Conclusions

The results obtained in this work show that there are distinctive geochemical characteristics and different absolute ages for the granitoid rocks studied and show that what had been considered to be a single granite pluton [La Escalerilla (s.l.)] corresponds to two composites plutons: La Escalerilla [s.s. (477 ± 10 Ma)], and El Volcán (405 ± 9 Ma). Particularly the concentrations of trace elements (e.g. Sr/Y ratios) in granitic facies of both plutons indicate that the separation from their sources in the two magmatic groups occurred at different depths; below 25 km for the LEP and above 30 km for the EVP, indicating distinctive geotectonic environments; in the first case (LEP), a thin crust linked to an environment of pre-collisional subduction, while in the second case (EVP), a thickened crust of post-collisional environment whose magmatism marks the beginning of the orogenic collapse.

An important point to consider is that the sequence of geological events, based on the absolute ages (determined by us and other authors) and field relationship between the different facies that make up the La Escalerilla pluton and tonalitic bodies of the area (Gasparillo, Las Verbenas, El Salto, Bemberg and Tinaja plutons), demonstrates a common geotectonic history, and for this reason we define the “Valle de Pancanta Plutonic Complex” (VPPC), dated between 480 and 468 Ma (Lower to Middle Ordovician). In addition, the field relationship between the VPPC and the metamorphic host rocks shows that the orogenic history in the study area can be clearly explained into the Ordovician-Silurian period, with the development of a subduction arc between ~490 ~465 Ma (invasion of the VPPC), and an increase of deformation (accompanied by exhumation and deficiency of arc plutonic magmatism) between ~465 ~415 Ma, due to the collision of Cuyania (Precordillera) on the proto-Andean margin of Gondwana. Only from the ~415 Ma onwards (in the Devonian period) the emplacement of the postorogenic plutons like El Volcán, El Molle, Barroso, Renca, El Hornito, Las Chacras and others occurs, these represent the collapse of the Famatian orogen produced after the collision.

Acknowledgments

Most of the data contained in this paper are part of the PhD thesis of the first author. We are grateful to Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) for the scholarships awarded to A. Morosini during his PhD studies. We would like to thank projects Nº 3-2-0114 (UNSL) and PICT 2014 N° 0958 focnyt (Argentina), for the financial support. The authors are grateful for the thorough review of the manuscript by E. Llamíbas and L. Pinotti, and for the valuable suggestions performed by A.M. Sato. They are also grateful the Regional-Editor V. Ramos and Editor-in-Chief J. Kellogg.

References

