XIV Seminario Latinoamericano de Análisis por Técnicas de Rayos X

Villa Carlos Paz - Argentina
3 al 7 de noviembre de 2014
Comités

Comité organizador
Germán Tirao (Chairman)
 Jorge Sánchez
 Pablo Daniel Pérez
 Jorge Trincavelli
 Sergio Ceppi
 Carlos Sosa
 José Riveros de la Vega

Colaboradores
 María Laura Giannone
 Gustavo Castellano
 Andrés Sepúlveda
 Tabatha Rodríguez

Comité científico internacional
 Lorena Cornejo Ponce, Universidad de Tarapacá - Chile
 Silvia Lucia Cuffini, Universidade Federal de Santa Catarina – Brasil
 José Miguel Delgado, Universidad de Los Andes - Venezuela
 Javier Martínez Juárez, Benemérita Universidad Autónoma de México - México
 Héctor Jorge Sánchez, Universidad Nacional de Córdoba - Argentina
 Joaquim Teixeira de Assis, Universidade do Estado do Rio de Janeiro Instituto Politécnico-Brasil
 René Van Grieken, University of Antwerp - Bélgica
 Cristina Vázquez, Departamento de Química – Comisión Nacional de Energía Atómica - Argentina
 José Antonio Henao Martínez, Universidad Industrial de Santander – Colombia
MULTIVACANCY SATELLITES STRUCTURES OF X-RAY EMISSION SPECTRA OF FLUORINE IN LANTHANIDE MATERIALS

E. S. Sánchez1,2, M. Torres Deluigi1,3 and J. A. Riveros de la Vega2,4

1 Universidad Nacional de San Luis, Departamento de Física, 5700 San Luis, Argentina
2 CONICET: Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Buenos Aires, Argentina
3 Universidad Nacional de Córdoba, Facultad de Ciencias Exactas y Naturales, 5500 Mendoza, Argentina
4 Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía y Física, X5016LAQ Córdoba, Argentina.

The fabrication of rare earth fluorides and the study of their physicochemical properties is subject of current research. Lanthanide fluorides are widely used in many fields, such as telecommunication, lasers, new optoelectronic devices and diagnostics [1].

We analyzed the X-ray emission spectra of synthetic lanthanide fluorides (LaF₃, CeF₃, PrF₃, NdF₃ and EuF₃) to investigate the relation between the characteristic feature of the spectra and the electronegativity of the different ligands of rare earth in these fluorides. The experimental data were obtained by means of electron impact, these spectra were recorded using a Wavelength Dispersive Spectrometer (WDS) that is coupled to a Scanning Electron Microscope, in the Laboratorio de Microscopía Electrónica y Microanálisis of the Universidad Nacional de San Luis (Argentina).

At higher energies than F-Kα₁, we found the satellite structure KL¹ consisting of lines (in increasing order of energy value) Kα′, Kα₂ and Kα₃. At even higher energies we also observed satellite lines by triple ionization (KL²), called Kα₄ and Kα₅[2].

We found that the KLⁿ (n=1, 2) satellite intensity in fluorides has a close relation to the electronegativity of the neighboring atoms of the x-ray emitting fluorine atom. This is because the KL* satellite is stronger for ionic compounds than it is for covalent compounds: The valence electrons are delocalized for covalent compounds, thus the perturbation due to the creation of the core-hole is small for said compounds. Consequently, for the ionic compounds, the valence electrons are localized, thus the perturbation due to the core-hole creation is large. Therefore, the satellites structures are strong for the ionic systems studied. So we could determine the ionicity of these lanthanide fluorides and the localization of valence electrons by measuring the intensities of the multivacancy satellites structures of their x-ray emission spectra.

Keywords: Lanthanide Fluorides; Multivacancy Satellites Lines; X-Ray Emission Spectrum

References