STUDY OF THE CATION EXCHANGE CAPACITY OF ZEOLITES AND ITS RELATION WITH SPECTRUM PARAMETERS OF IONS EXCHANGED

L. Mentasty 1, G. Tirao 2, M. Torres Deluigi 3, I. De Vito 1, José A. Riveros 2

1 Facultad de Química, Bioquímica y Farmacia; Universidad Nacional de San Luis;
Chacabuco 9/7, 5700 San Luis, Argentina.
2 Facultad de Matemática, Astronomía y Física; Universidad Nacional de Córdoba;
Medina Allende y Haya de la Torre, 5000 Córdoba, Argentina.
3 Departamento de Física, Facultad de Ciencias Físicas, Matemáticas y Naturales; Universidad Nacional de San Luis;
Ejército de los Andes 950, 5700 San Luis, Argentina.
(mentasty@uns.edu.ar)

ABSTRACT

Zeolites are minerals highly crystalline of the hydrated aluminosilicates family, they have common structural characteristics with channels and cavities of molecular dimensions where the compensation cations (Na⁺, K⁺, Ca²⁺, Sr²⁺, Ba²⁺, Mg²⁺, ...), water molecules, or others adsorbates and salts are situated. The physicochemical and microporous properties provide unique aspects for a great diversity of applications. The cation exchange capacity (CEC) is an essential characteristic of zeolites that allow them to modify and to fit considerably their properties for sundry uses [1]. This work studies the CEC of SA and 13X synthetic zeolites for remove heavy metal ions such as Cr³⁺ y el Cu²⁺, by means of high resolution absorption and emission Kβ spectra which were obtained with synchrotron radiation monochromatic excitation [2-5]. The absorption spectra were generated by fluorescent way from valence band of Cr and Cu exchanged in both types of zeolites. The relation between the CEC of these zeolites with the spectrum parameters of Cr and Cu (energetic positions, natural widths and integrated intensities) were determined. It was also achieved to characterize chemical and physically the ionic exchange with Cr³⁺ y el Cu²⁺ carried out in these synthetic zeolites. This results give relevant information that can be applied in diverse areas, particularly in Cr(VI) retention. This pollutant of high-toxicity for biological systems (especially for humans) uses it in galvanized, tannery and textile industries.

Keywords: Zeolites, Cation exchange capacity, Synchrotron radiation.

Acknowledgement: The authors wish to acknowledge Secretaría de Ciencia y Técnica from Universidad Nacional de Córdoba (UNC) and Universidad Nacional de San Luis (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Agencia Nacional de Promoción Científica y Tecnológica (FONCYT) (PICT-BID) from Argentina for financial support.

References: